MAYBE 40.249 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/empty.hs
H-Termination of the given Haskell-Program with start terms could not be shown:



HASKELL
  ↳ BR

mainModule Main
  ((range :: (Int,Int ->  [Int]) :: (Int,Int ->  [Int])

module Main where
  import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule Main
  ((range :: (Int,Int ->  [Int]) :: (Int,Int ->  [Int])

module Main where
  import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False

The following Function with conditions
takeWhile p [] = []
takeWhile p (x : xs)
 | p x
 = x : takeWhile p xs
 | otherwise
 = []

is transformed to
takeWhile p [] = takeWhile3 p []
takeWhile p (x : xs) = takeWhile2 p (x : xs)

takeWhile1 p x xs True = x : takeWhile p xs
takeWhile1 p x xs False = takeWhile0 p x xs otherwise

takeWhile0 p x xs True = []

takeWhile2 p (x : xs) = takeWhile1 p x xs (p x)

takeWhile3 p [] = []
takeWhile3 vz wu = takeWhile2 vz wu



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ NumRed

mainModule Main
  ((range :: (Int,Int ->  [Int]) :: (Int,Int ->  [Int])

module Main where
  import qualified Prelude



Num Reduction: All numbers are transformed to thier corresponding representation with Pos, Neg, Succ and Zero.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
HASKELL
              ↳ Narrow
              ↳ Narrow

mainModule Main
  (range :: (Int,Int ->  [Int])

module Main where
  import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
QDP
                  ↳ DependencyGraphProof
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile11(wv55, Succ(wv560), Zero, Succ(wv580)) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)))
new_takeWhile(Neg(Zero), Neg(Zero)) → new_takeWhile(Neg(Zero), Pos(Succ(Zero)))
new_takeWhile(Pos(Succ(wv3100)), Pos(Succ(wv3000))) → new_takeWhile1(wv3100, wv3000, wv3000, wv3100)
new_takeWhile(Pos(Zero), Pos(Zero)) → new_takeWhile(Pos(Zero), Pos(new_primPlusNat0))
new_takeWhile(Neg(Succ(wv3100)), Neg(Succ(wv3000))) → new_takeWhile11(wv3100, wv3000, wv3100, wv3000)
new_takeWhile11(wv55, wv56, Succ(wv570), Succ(wv580)) → new_takeWhile11(wv55, wv56, wv570, wv580)
new_takeWhile1(wv50, wv51, Succ(wv520), Succ(wv530)) → new_takeWhile1(wv50, wv51, wv520, wv530)
new_takeWhile1(wv50, wv51, Zero, Zero) → new_takeWhile10(wv50, wv51)
new_takeWhile(Neg(Zero), Neg(Succ(Zero))) → new_takeWhile(Neg(Zero), Pos(Zero))
new_takeWhile(Pos(wv310), Neg(Succ(Succ(wv30000)))) → new_takeWhile(Pos(wv310), Neg(Succ(wv30000)))
new_takeWhile(Neg(Zero), Pos(Zero)) → new_takeWhile(Neg(Zero), Pos(new_primPlusNat0))
new_takeWhile12(wv55, Succ(wv560)) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)))
new_takeWhile(Pos(Succ(wv3100)), Pos(Zero)) → new_takeWhile(Pos(Succ(wv3100)), Pos(new_primPlusNat0))
new_takeWhile(Pos(Zero), Neg(Zero)) → new_takeWhile(Pos(Zero), Pos(Succ(Zero)))
new_takeWhile1(wv50, wv51, Zero, Succ(wv530)) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51)))))
new_takeWhile12(wv55, Zero) → new_takeWhile(Neg(Succ(wv55)), Pos(Zero))
new_takeWhile(Neg(Zero), Neg(Succ(Succ(wv30000)))) → new_takeWhile(Neg(Zero), Neg(Succ(wv30000)))
new_takeWhile11(wv55, wv56, Zero, Zero) → new_takeWhile12(wv55, wv56)
new_takeWhile(Pos(wv310), Neg(Succ(Zero))) → new_takeWhile(Pos(wv310), Pos(Zero))
new_takeWhile10(wv50, wv51) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51)))))
new_takeWhile(Pos(Succ(wv3100)), Neg(Zero)) → new_takeWhile(Pos(Succ(wv3100)), Pos(Succ(Zero)))
new_takeWhile11(wv55, Zero, Zero, Succ(wv580)) → new_takeWhile(Neg(Succ(wv55)), Pos(Zero))

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv510)) → Succ(wv510)
new_primPlusNat0Succ(Zero)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat0
new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 10 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Neg(Zero), Neg(Succ(Succ(wv30000)))) → new_takeWhile(Neg(Zero), Neg(Succ(wv30000)))

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv510)) → Succ(wv510)
new_primPlusNat0Succ(Zero)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat0
new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QReductionProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Neg(Zero), Neg(Succ(Succ(wv30000)))) → new_takeWhile(Neg(Zero), Neg(Succ(wv30000)))

R is empty.
The set Q consists of the following terms:

new_primPlusNat0
new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primPlusNat0
new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
QDP
                                ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Neg(Zero), Neg(Succ(Succ(wv30000)))) → new_takeWhile(Neg(Zero), Neg(Succ(wv30000)))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_takeWhile(Neg(Zero), Neg(Succ(Succ(wv30000)))) → new_takeWhile(Neg(Zero), Neg(Succ(wv30000)))


Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = 2·x1   
POL(Succ(x1)) = 1 + 2·x1   
POL(Zero) = 0   
POL(new_takeWhile(x1, x2)) = x1 + 2·x2   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ RuleRemovalProof
QDP
                                    ↳ PisEmptyProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Pos(Succ(wv3100)), Pos(Succ(wv3000))) → new_takeWhile1(wv3100, wv3000, wv3000, wv3100)
new_takeWhile1(wv50, wv51, Zero, Succ(wv530)) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51)))))
new_takeWhile10(wv50, wv51) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51)))))
new_takeWhile1(wv50, wv51, Zero, Zero) → new_takeWhile10(wv50, wv51)
new_takeWhile1(wv50, wv51, Succ(wv520), Succ(wv530)) → new_takeWhile1(wv50, wv51, wv520, wv530)

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv510)) → Succ(wv510)
new_primPlusNat0Succ(Zero)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat0
new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QReductionProof
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Pos(Succ(wv3100)), Pos(Succ(wv3000))) → new_takeWhile1(wv3100, wv3000, wv3000, wv3100)
new_takeWhile1(wv50, wv51, Zero, Succ(wv530)) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51)))))
new_takeWhile10(wv50, wv51) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51)))))
new_takeWhile1(wv50, wv51, Zero, Zero) → new_takeWhile10(wv50, wv51)
new_takeWhile1(wv50, wv51, Succ(wv520), Succ(wv530)) → new_takeWhile1(wv50, wv51, wv520, wv530)

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv510)) → Succ(wv510)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat0
new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primPlusNat0



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
QDP
                                ↳ Instantiation
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Pos(Succ(wv3100)), Pos(Succ(wv3000))) → new_takeWhile1(wv3100, wv3000, wv3000, wv3100)
new_takeWhile1(wv50, wv51, Zero, Succ(wv530)) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51)))))
new_takeWhile10(wv50, wv51) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51)))))
new_takeWhile1(wv50, wv51, Succ(wv520), Succ(wv530)) → new_takeWhile1(wv50, wv51, wv520, wv530)
new_takeWhile1(wv50, wv51, Zero, Zero) → new_takeWhile10(wv50, wv51)

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv510)) → Succ(wv510)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule new_takeWhile(Pos(Succ(wv3100)), Pos(Succ(wv3000))) → new_takeWhile1(wv3100, wv3000, wv3000, wv3100) we obtained the following new rules:

new_takeWhile(Pos(Succ(z0)), Pos(Succ(Succ(y_0)))) → new_takeWhile1(z0, Succ(y_0), Succ(y_0), z0)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
QDP
                                    ↳ ForwardInstantiation
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile1(wv50, wv51, Zero, Succ(wv530)) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51)))))
new_takeWhile(Pos(Succ(z0)), Pos(Succ(Succ(y_0)))) → new_takeWhile1(z0, Succ(y_0), Succ(y_0), z0)
new_takeWhile10(wv50, wv51) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51)))))
new_takeWhile1(wv50, wv51, Zero, Zero) → new_takeWhile10(wv50, wv51)
new_takeWhile1(wv50, wv51, Succ(wv520), Succ(wv530)) → new_takeWhile1(wv50, wv51, wv520, wv530)

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv510)) → Succ(wv510)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_takeWhile1(wv50, wv51, Succ(wv520), Succ(wv530)) → new_takeWhile1(wv50, wv51, wv520, wv530) we obtained the following new rules:

new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, x1, Zero, Zero)
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ ForwardInstantiation
QDP
                                        ↳ ForwardInstantiation
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile1(x0, x1, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, x1, Zero, Zero)
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile1(wv50, wv51, Zero, Succ(wv530)) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51)))))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile(Pos(Succ(z0)), Pos(Succ(Succ(y_0)))) → new_takeWhile1(z0, Succ(y_0), Succ(y_0), z0)
new_takeWhile10(wv50, wv51) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51)))))
new_takeWhile1(wv50, wv51, Zero, Zero) → new_takeWhile10(wv50, wv51)

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv510)) → Succ(wv510)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_takeWhile(Pos(Succ(z0)), Pos(Succ(Succ(y_0)))) → new_takeWhile1(z0, Succ(y_0), Succ(y_0), z0) we obtained the following new rules:

new_takeWhile(Pos(Succ(Succ(Succ(y_2)))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Succ(y_2)), Succ(Zero), Succ(Zero), Succ(Succ(y_2)))
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))
new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
QDP
                                            ↳ Narrowing
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Pos(Succ(Succ(Succ(y_2)))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Succ(y_2)), Succ(Zero), Succ(Zero), Succ(Succ(y_2)))
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, x1, Zero, Zero)
new_takeWhile1(wv50, wv51, Zero, Succ(wv530)) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51)))))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile10(wv50, wv51) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51)))))
new_takeWhile1(wv50, wv51, Zero, Zero) → new_takeWhile10(wv50, wv51)
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))
new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero))

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv510)) → Succ(wv510)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_takeWhile1(wv50, wv51, Zero, Succ(wv530)) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51))))) at position [1,0,0,0] we obtained the following new rules:

new_takeWhile1(y0, Succ(x0), Zero, Succ(y2)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Succ(x0)))))
new_takeWhile1(y0, Zero, Zero, Succ(y2)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero))))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
                                          ↳ QDP
                                            ↳ Narrowing
QDP
                                                ↳ Narrowing
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile1(y0, Zero, Zero, Succ(y2)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero))))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, x1, Zero, Zero)
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile(Pos(Succ(Succ(Succ(y_2)))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Succ(y_2)), Succ(Zero), Succ(Zero), Succ(Succ(y_2)))
new_takeWhile1(y0, Succ(x0), Zero, Succ(y2)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Succ(x0)))))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile10(wv50, wv51) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51)))))
new_takeWhile1(wv50, wv51, Zero, Zero) → new_takeWhile10(wv50, wv51)
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))
new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero))

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv510)) → Succ(wv510)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule new_takeWhile10(wv50, wv51) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51))))) at position [1,0,0,0] we obtained the following new rules:

new_takeWhile10(y0, Zero) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero))))
new_takeWhile10(y0, Succ(x0)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Succ(x0)))))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Narrowing
QDP
                                                    ↳ UsableRulesProof
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile1(y0, Zero, Zero, Succ(y2)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero))))
new_takeWhile(Pos(Succ(Succ(Succ(y_2)))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Succ(y_2)), Succ(Zero), Succ(Zero), Succ(Succ(y_2)))
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, x1, Zero, Zero)
new_takeWhile10(y0, Succ(x0)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Succ(x0)))))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile1(y0, Succ(x0), Zero, Succ(y2)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Succ(x0)))))
new_takeWhile1(wv50, wv51, Zero, Zero) → new_takeWhile10(wv50, wv51)
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))
new_takeWhile10(y0, Zero) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero))))
new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero))

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv510)) → Succ(wv510)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
QDP
                                                        ↳ QReductionProof
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile1(y0, Zero, Zero, Succ(y2)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero))))
new_takeWhile(Pos(Succ(Succ(Succ(y_2)))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Succ(y_2)), Succ(Zero), Succ(Zero), Succ(Succ(y_2)))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, x1, Zero, Zero)
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile10(y0, Succ(x0)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Succ(x0)))))
new_takeWhile1(y0, Succ(x0), Zero, Succ(y2)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Succ(x0)))))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile1(wv50, wv51, Zero, Zero) → new_takeWhile10(wv50, wv51)
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))
new_takeWhile10(y0, Zero) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero))))
new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero))

R is empty.
The set Q consists of the following terms:

new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
QDP
                                                            ↳ ForwardInstantiation
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile1(y0, Zero, Zero, Succ(y2)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero))))
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, x1, Zero, Zero)
new_takeWhile(Pos(Succ(Succ(Succ(y_2)))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Succ(y_2)), Succ(Zero), Succ(Zero), Succ(Succ(y_2)))
new_takeWhile10(y0, Succ(x0)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Succ(x0)))))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile1(y0, Succ(x0), Zero, Succ(y2)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Succ(x0)))))
new_takeWhile1(wv50, wv51, Zero, Zero) → new_takeWhile10(wv50, wv51)
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))
new_takeWhile10(y0, Zero) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero))))
new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_takeWhile1(y0, Zero, Zero, Succ(y2)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero)))) we obtained the following new rules:

new_takeWhile1(Succ(Zero), Zero, Zero, Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero))))
new_takeWhile1(Succ(Succ(y_0)), Zero, Zero, Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Zero))))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ ForwardInstantiation
QDP
                                                                ↳ ForwardInstantiation
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile1(Succ(Zero), Zero, Zero, Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero))))
new_takeWhile(Pos(Succ(Succ(Succ(y_2)))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Succ(y_2)), Succ(Zero), Succ(Zero), Succ(Succ(y_2)))
new_takeWhile10(y0, Succ(x0)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Succ(x0)))))
new_takeWhile1(Succ(Succ(y_0)), Zero, Zero, Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Zero))))
new_takeWhile1(wv50, wv51, Zero, Zero) → new_takeWhile10(wv50, wv51)
new_takeWhile10(y0, Zero) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero))))
new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero))
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, x1, Zero, Zero)
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile1(y0, Succ(x0), Zero, Succ(y2)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Succ(x0)))))
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_takeWhile10(y0, Succ(x0)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Succ(x0))))) we obtained the following new rules:

new_takeWhile10(Succ(Succ(y_0)), Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ ForwardInstantiation
                                                              ↳ QDP
                                                                ↳ ForwardInstantiation
QDP
                                                                    ↳ ForwardInstantiation
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile1(Succ(Zero), Zero, Zero, Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero))))
new_takeWhile(Pos(Succ(Succ(Succ(y_2)))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Succ(y_2)), Succ(Zero), Succ(Zero), Succ(Succ(y_2)))
new_takeWhile1(Succ(Succ(y_0)), Zero, Zero, Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Zero))))
new_takeWhile1(wv50, wv51, Zero, Zero) → new_takeWhile10(wv50, wv51)
new_takeWhile10(y0, Zero) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero))))
new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, x1, Zero, Zero)
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile1(y0, Succ(x0), Zero, Succ(y2)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Succ(x0)))))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile10(Succ(Succ(y_0)), Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_takeWhile1(y0, Succ(x0), Zero, Succ(y2)) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Succ(x0))))) we obtained the following new rules:

new_takeWhile1(Succ(Succ(y_0)), Succ(x1), Zero, Succ(x2)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ ForwardInstantiation
                                                              ↳ QDP
                                                                ↳ ForwardInstantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
QDP
                                                                        ↳ ForwardInstantiation
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile1(Succ(Zero), Zero, Zero, Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero))))
new_takeWhile(Pos(Succ(Succ(Succ(y_2)))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Succ(y_2)), Succ(Zero), Succ(Zero), Succ(Succ(y_2)))
new_takeWhile1(Succ(Succ(y_0)), Zero, Zero, Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Zero))))
new_takeWhile1(wv50, wv51, Zero, Zero) → new_takeWhile10(wv50, wv51)
new_takeWhile10(y0, Zero) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero))))
new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero))
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, x1, Zero, Zero)
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile10(Succ(Succ(y_0)), Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))
new_takeWhile1(Succ(Succ(y_0)), Succ(x1), Zero, Succ(x2)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_takeWhile1(wv50, wv51, Zero, Zero) → new_takeWhile10(wv50, wv51) we obtained the following new rules:

new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Zero, Zero) → new_takeWhile10(Succ(Succ(y_0)), Succ(y_1))
new_takeWhile1(x0, Zero, Zero, Zero) → new_takeWhile10(x0, Zero)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ ForwardInstantiation
                                                              ↳ QDP
                                                                ↳ ForwardInstantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
QDP
                                                                            ↳ ForwardInstantiation
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile1(Succ(Zero), Zero, Zero, Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero))))
new_takeWhile(Pos(Succ(Succ(Succ(y_2)))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Succ(y_2)), Succ(Zero), Succ(Zero), Succ(Succ(y_2)))
new_takeWhile1(Succ(Succ(y_0)), Zero, Zero, Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Zero))))
new_takeWhile10(y0, Zero) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero))))
new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero))
new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Zero, Zero) → new_takeWhile10(Succ(Succ(y_0)), Succ(y_1))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, x1, Zero, Zero)
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile1(x0, Zero, Zero, Zero) → new_takeWhile10(x0, Zero)
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile10(Succ(Succ(y_0)), Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))
new_takeWhile1(Succ(Succ(y_0)), Succ(x1), Zero, Succ(x2)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_takeWhile1(x0, x1, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, x1, Zero, Zero) we obtained the following new rules:

new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Succ(Zero), Succ(Zero)) → new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Zero, Zero)
new_takeWhile1(x0, Zero, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, Zero, Zero, Zero)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ ForwardInstantiation
                                                              ↳ QDP
                                                                ↳ ForwardInstantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
QDP
                                                                                ↳ DependencyGraphProof
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile1(Succ(Zero), Zero, Zero, Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero))))
new_takeWhile(Pos(Succ(Succ(Succ(y_2)))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Succ(y_2)), Succ(Zero), Succ(Zero), Succ(Succ(y_2)))
new_takeWhile1(Succ(Succ(y_0)), Zero, Zero, Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Zero))))
new_takeWhile10(y0, Zero) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero))))
new_takeWhile1(x0, Zero, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, Zero, Zero, Zero)
new_takeWhile(Pos(Succ(Succ(Zero))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Zero), Succ(Zero), Succ(Zero), Succ(Zero))
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Zero, Zero) → new_takeWhile10(Succ(Succ(y_0)), Succ(y_1))
new_takeWhile1(x0, Zero, Zero, Zero) → new_takeWhile10(x0, Zero)
new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Succ(Zero), Succ(Zero)) → new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Zero, Zero)
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile10(Succ(Succ(y_0)), Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))
new_takeWhile1(Succ(Succ(y_0)), Succ(x1), Zero, Succ(x2)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ ForwardInstantiation
                                                              ↳ QDP
                                                                ↳ ForwardInstantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
QDP
                                                                                    ↳ ForwardInstantiation
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Zero, Zero) → new_takeWhile10(Succ(Succ(y_0)), Succ(y_1))
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile(Pos(Succ(Succ(Succ(y_2)))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Succ(y_2)), Succ(Zero), Succ(Zero), Succ(Succ(y_2)))
new_takeWhile1(x0, Zero, Zero, Zero) → new_takeWhile10(x0, Zero)
new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Succ(Zero), Succ(Zero)) → new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Zero, Zero)
new_takeWhile1(Succ(Succ(y_0)), Zero, Zero, Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Zero))))
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile10(Succ(Succ(y_0)), Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))
new_takeWhile10(y0, Zero) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero))))
new_takeWhile1(x0, Zero, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, Zero, Zero, Zero)
new_takeWhile1(Succ(Succ(y_0)), Succ(x1), Zero, Succ(x2)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By forward instantiating [14] the rule new_takeWhile10(y0, Zero) → new_takeWhile(Pos(Succ(y0)), Pos(Succ(Succ(Zero)))) we obtained the following new rules:

new_takeWhile10(Succ(Succ(y_0)), Zero) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Zero))))



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ ForwardInstantiation
                                                              ↳ QDP
                                                                ↳ ForwardInstantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
QDP
                                                                                        ↳ QDPOrderProof
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile10(Succ(Succ(y_0)), Zero) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Zero))))
new_takeWhile(Pos(Succ(Succ(Succ(y_2)))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Succ(y_2)), Succ(Zero), Succ(Zero), Succ(Succ(y_2)))
new_takeWhile1(Succ(Succ(y_0)), Zero, Zero, Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Zero))))
new_takeWhile1(x0, Zero, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, Zero, Zero, Zero)
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Zero, Zero) → new_takeWhile10(Succ(Succ(y_0)), Succ(y_1))
new_takeWhile1(x0, Zero, Zero, Zero) → new_takeWhile10(x0, Zero)
new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Succ(Zero), Succ(Zero)) → new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Zero, Zero)
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile10(Succ(Succ(y_0)), Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))
new_takeWhile1(Succ(Succ(y_0)), Succ(x1), Zero, Succ(x2)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_takeWhile10(Succ(Succ(y_0)), Zero) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Zero))))
new_takeWhile1(Succ(Succ(y_0)), Zero, Zero, Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Zero))))
The remaining pairs can at least be oriented weakly.

new_takeWhile(Pos(Succ(Succ(Succ(y_2)))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Succ(y_2)), Succ(Zero), Succ(Zero), Succ(Succ(y_2)))
new_takeWhile1(x0, Zero, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, Zero, Zero, Zero)
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Zero, Zero) → new_takeWhile10(Succ(Succ(y_0)), Succ(y_1))
new_takeWhile1(x0, Zero, Zero, Zero) → new_takeWhile10(x0, Zero)
new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Succ(Zero), Succ(Zero)) → new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Zero, Zero)
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile10(Succ(Succ(y_0)), Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))
new_takeWhile1(Succ(Succ(y_0)), Succ(x1), Zero, Succ(x2)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))
Used ordering: Polynomial interpretation [25]:

POL(Pos(x1)) = 0   
POL(Succ(x1)) = 0   
POL(Zero) = 1   
POL(new_takeWhile(x1, x2)) = 0   
POL(new_takeWhile1(x1, x2, x3, x4)) = x1 + x2   
POL(new_takeWhile10(x1, x2)) = x2   

The following usable rules [17] were oriented: none



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ ForwardInstantiation
                                                              ↳ QDP
                                                                ↳ ForwardInstantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
QDP
                                                                                            ↳ DependencyGraphProof
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Zero, Zero) → new_takeWhile10(Succ(Succ(y_0)), Succ(y_1))
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile(Pos(Succ(Succ(Succ(y_2)))), Pos(Succ(Succ(Zero)))) → new_takeWhile1(Succ(Succ(y_2)), Succ(Zero), Succ(Zero), Succ(Succ(y_2)))
new_takeWhile1(x0, Zero, Zero, Zero) → new_takeWhile10(x0, Zero)
new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Succ(Zero), Succ(Zero)) → new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Zero, Zero)
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile10(Succ(Succ(y_0)), Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))
new_takeWhile1(Succ(Succ(y_0)), Succ(x1), Zero, Succ(x2)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))
new_takeWhile1(x0, Zero, Succ(Zero), Succ(Zero)) → new_takeWhile1(x0, Zero, Zero, Zero)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ Instantiation
                                  ↳ QDP
                                    ↳ ForwardInstantiation
                                      ↳ QDP
                                        ↳ ForwardInstantiation
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ Narrowing
                                                  ↳ QDP
                                                    ↳ UsableRulesProof
                                                      ↳ QDP
                                                        ↳ QReductionProof
                                                          ↳ QDP
                                                            ↳ ForwardInstantiation
                                                              ↳ QDP
                                                                ↳ ForwardInstantiation
                                                                  ↳ QDP
                                                                    ↳ ForwardInstantiation
                                                                      ↳ QDP
                                                                        ↳ ForwardInstantiation
                                                                          ↳ QDP
                                                                            ↳ ForwardInstantiation
                                                                              ↳ QDP
                                                                                ↳ DependencyGraphProof
                                                                                  ↳ QDP
                                                                                    ↳ ForwardInstantiation
                                                                                      ↳ QDP
                                                                                        ↳ QDPOrderProof
                                                                                          ↳ QDP
                                                                                            ↳ DependencyGraphProof
QDP
                      ↳ QDP
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Zero, Zero) → new_takeWhile10(Succ(Succ(y_0)), Succ(y_1))
new_takeWhile1(x0, x1, Succ(Succ(y_2)), Succ(Succ(y_3))) → new_takeWhile1(x0, x1, Succ(y_2), Succ(y_3))
new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Succ(Zero), Succ(Zero)) → new_takeWhile1(Succ(Succ(y_0)), Succ(y_1), Zero, Zero)
new_takeWhile1(x0, x1, Succ(Zero), Succ(Succ(y_2))) → new_takeWhile1(x0, x1, Zero, Succ(y_2))
new_takeWhile10(Succ(Succ(y_0)), Succ(x1)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))
new_takeWhile(Pos(Succ(Succ(Succ(y_3)))), Pos(Succ(Succ(Succ(y_2))))) → new_takeWhile1(Succ(Succ(y_3)), Succ(Succ(y_2)), Succ(Succ(y_2)), Succ(Succ(y_3)))
new_takeWhile1(Succ(Succ(y_0)), Succ(x1), Zero, Succ(x2)) → new_takeWhile(Pos(Succ(Succ(Succ(y_0)))), Pos(Succ(Succ(Succ(x1)))))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Pos(wv310), Neg(Succ(Succ(wv30000)))) → new_takeWhile(Pos(wv310), Neg(Succ(wv30000)))

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv510)) → Succ(wv510)
new_primPlusNat0Succ(Zero)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat0
new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QReductionProof
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Pos(wv310), Neg(Succ(Succ(wv30000)))) → new_takeWhile(Pos(wv310), Neg(Succ(wv30000)))

R is empty.
The set Q consists of the following terms:

new_primPlusNat0
new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primPlusNat0
new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
QDP
                                ↳ RuleRemovalProof
                      ↳ QDP
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Pos(wv310), Neg(Succ(Succ(wv30000)))) → new_takeWhile(Pos(wv310), Neg(Succ(wv30000)))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_takeWhile(Pos(wv310), Neg(Succ(Succ(wv30000)))) → new_takeWhile(Pos(wv310), Neg(Succ(wv30000)))


Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = 2·x1   
POL(Pos(x1)) = x1   
POL(Succ(x1)) = 1 + 2·x1   
POL(new_takeWhile(x1, x2)) = x1 + 2·x2   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ RuleRemovalProof
QDP
                                    ↳ PisEmptyProof
                      ↳ QDP
              ↳ Narrow

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ UsableRulesProof
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile11(wv55, Succ(wv560), Zero, Succ(wv580)) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)))
new_takeWhile12(wv55, Succ(wv560)) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)))
new_takeWhile(Neg(Succ(wv3100)), Neg(Succ(wv3000))) → new_takeWhile11(wv3100, wv3000, wv3100, wv3000)
new_takeWhile11(wv55, wv56, Zero, Zero) → new_takeWhile12(wv55, wv56)
new_takeWhile11(wv55, wv56, Succ(wv570), Succ(wv580)) → new_takeWhile11(wv55, wv56, wv570, wv580)

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv510)) → Succ(wv510)
new_primPlusNat0Succ(Zero)
new_primPlusNat(Zero) → Zero

The set Q consists of the following terms:

new_primPlusNat0
new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
QDP
                            ↳ QReductionProof
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile11(wv55, Succ(wv560), Zero, Succ(wv580)) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)))
new_takeWhile12(wv55, Succ(wv560)) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)))
new_takeWhile(Neg(Succ(wv3100)), Neg(Succ(wv3000))) → new_takeWhile11(wv3100, wv3000, wv3100, wv3000)
new_takeWhile11(wv55, wv56, Zero, Zero) → new_takeWhile12(wv55, wv56)
new_takeWhile11(wv55, wv56, Succ(wv570), Succ(wv580)) → new_takeWhile11(wv55, wv56, wv570, wv580)

R is empty.
The set Q consists of the following terms:

new_primPlusNat0
new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

new_primPlusNat0
new_primPlusNat(Succ(x0))
new_primPlusNat(Zero)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
QDP
                                ↳ QDPOrderProof
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile11(wv55, Succ(wv560), Zero, Succ(wv580)) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)))
new_takeWhile12(wv55, Succ(wv560)) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)))
new_takeWhile(Neg(Succ(wv3100)), Neg(Succ(wv3000))) → new_takeWhile11(wv3100, wv3000, wv3100, wv3000)
new_takeWhile11(wv55, wv56, Zero, Zero) → new_takeWhile12(wv55, wv56)
new_takeWhile11(wv55, wv56, Succ(wv570), Succ(wv580)) → new_takeWhile11(wv55, wv56, wv570, wv580)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_takeWhile11(wv55, Succ(wv560), Zero, Succ(wv580)) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)))
new_takeWhile12(wv55, Succ(wv560)) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)))
The remaining pairs can at least be oriented weakly.

new_takeWhile(Neg(Succ(wv3100)), Neg(Succ(wv3000))) → new_takeWhile11(wv3100, wv3000, wv3100, wv3000)
new_takeWhile11(wv55, wv56, Zero, Zero) → new_takeWhile12(wv55, wv56)
new_takeWhile11(wv55, wv56, Succ(wv570), Succ(wv580)) → new_takeWhile11(wv55, wv56, wv570, wv580)
Used ordering: Polynomial interpretation [25]:

POL(Neg(x1)) = x1   
POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL(new_takeWhile(x1, x2)) = x2   
POL(new_takeWhile11(x1, x2, x3, x4)) = 1 + x2   
POL(new_takeWhile12(x1, x2)) = 1 + x2   

The following usable rules [17] were oriented: none



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ QDPOrderProof
QDP
                                    ↳ DependencyGraphProof
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Neg(Succ(wv3100)), Neg(Succ(wv3000))) → new_takeWhile11(wv3100, wv3000, wv3100, wv3000)
new_takeWhile11(wv55, wv56, Zero, Zero) → new_takeWhile12(wv55, wv56)
new_takeWhile11(wv55, wv56, Succ(wv570), Succ(wv580)) → new_takeWhile11(wv55, wv56, wv570, wv580)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ UsableRulesProof
                          ↳ QDP
                            ↳ QReductionProof
                              ↳ QDP
                                ↳ QDPOrderProof
                                  ↳ QDP
                                    ↳ DependencyGraphProof
QDP
                                        ↳ QDPSizeChangeProof
              ↳ Narrow

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile11(wv55, wv56, Succ(wv570), Succ(wv580)) → new_takeWhile11(wv55, wv56, wv570, wv580)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:


Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
QDP
                  ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Neg(Zero), Neg(Succ(Zero)), []) → new_takeWhile(Neg(Zero), Pos(Zero), [])
new_takeWhile(Neg(Zero), Neg(Succ(Succ(wv30000))), []) → new_takeWhile(Neg(Zero), Neg(Succ(wv30000)), [])
new_takeWhile(Neg(Zero), Pos(Zero), []) → new_takeWhile(Neg(Zero), Pos(new_primPlusNat0([])), [])
new_takeWhile(Neg(Succ(wv3100)), Neg(Succ(wv3000)), []) → new_takeWhile11(wv3100, wv3000, wv3100, wv3000, [])
new_takeWhile11(wv55, wv56, Zero, Zero, []) → new_takeWhile12(wv55, wv56, [])
new_takeWhile12(wv55, Succ(wv560), []) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)), [])
new_takeWhile11(wv55, Zero, Zero, Succ(wv580), []) → new_takeWhile(Neg(Succ(wv55)), Pos(Zero), [])
new_takeWhile11(wv55, Succ(wv560), Zero, Succ(wv580), []) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)), [])
new_takeWhile1(wv50, wv51, Succ(wv520), Succ(wv530), []) → new_takeWhile1(wv50, wv51, wv520, wv530, [])
new_takeWhile11(wv55, wv56, Succ(wv570), Succ(wv580), []) → new_takeWhile11(wv55, wv56, wv570, wv580, [])
new_takeWhile(Pos(Succ(wv3100)), Neg(Zero), []) → new_takeWhile(Pos(Succ(wv3100)), Pos(Succ(Zero)), [])
new_takeWhile(Pos(wv310), Neg(Succ(Succ(wv30000))), []) → new_takeWhile(Pos(wv310), Neg(Succ(wv30000)), [])
new_takeWhile(Pos(Succ(wv3100)), Pos(Succ(wv3000)), []) → new_takeWhile1(wv3100, wv3000, wv3000, wv3100, [])
new_takeWhile(Pos(Zero), Pos(Zero), []) → new_takeWhile(Pos(Zero), Pos(new_primPlusNat0([])), [])
new_takeWhile1(wv50, wv51, Zero, Zero, []) → new_takeWhile10(wv50, wv51, [])
new_takeWhile(Pos(Succ(wv3100)), Pos(Zero), []) → new_takeWhile(Pos(Succ(wv3100)), Pos(new_primPlusNat0([])), [])
new_takeWhile(Pos(wv310), Neg(Succ(Zero)), []) → new_takeWhile(Pos(wv310), Pos(Zero), [])
new_takeWhile1(wv50, wv51, Zero, Succ(wv530), []) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51, [])))), [])
new_takeWhile(Neg(Zero), Neg(Zero), []) → new_takeWhile(Neg(Zero), Pos(Succ(Zero)), [])
new_takeWhile10(wv50, wv51, []) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51, [])))), [])
new_takeWhile(Pos(Zero), Neg(Zero), []) → new_takeWhile(Pos(Zero), Pos(Succ(Zero)), [])
new_takeWhile12(wv55, Zero, []) → new_takeWhile(Neg(Succ(wv55)), Pos(Zero), [])

The TRS R consists of the following rules:

new_primPlusNat(Zero, []) → Zero
new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Q is empty.
We have to consider all (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 7 SCCs with 7 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
QDP
                        ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Pos(Zero), Pos(Zero), []) → new_takeWhile(Pos(Zero), Pos(new_primPlusNat0([])), [])

The TRS R consists of the following rules:

new_primPlusNat(Zero, []) → Zero
new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Q is empty.
We have to consider all (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

new_primPlusNat(Zero, []) → Zero

Used ordering: POLO with Polynomial interpretation [25]:

POL(Pos(x1)) = x1   
POL(Succ(x1)) = x1   
POL(Zero) = 1   
POL([]) = 0   
POL(new_primPlusNat(x1, x2)) = 2·x1 + 2·x2   
POL(new_primPlusNat0(x1)) = 1 + 2·x1   
POL(new_takeWhile(x1, x2, x3)) = x1 + x2 + x3   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ DependencyGraphProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Pos(Zero), Pos(Zero), []) → new_takeWhile(Pos(Zero), Pos(new_primPlusNat0([])), [])

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Q is empty.
We have to consider all (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Pos(Succ(wv3100)), Pos(Succ(wv3000)), []) → new_takeWhile1(wv3100, wv3000, wv3000, wv3100, [])
new_takeWhile1(wv50, wv51, Zero, Zero, []) → new_takeWhile10(wv50, wv51, [])
new_takeWhile1(wv50, wv51, Succ(wv520), Succ(wv530), []) → new_takeWhile1(wv50, wv51, wv520, wv530, [])
new_takeWhile1(wv50, wv51, Zero, Succ(wv530), []) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51, [])))), [])
new_takeWhile10(wv50, wv51, []) → new_takeWhile(Pos(Succ(wv50)), Pos(Succ(Succ(new_primPlusNat(wv51, [])))), [])

The TRS R consists of the following rules:

new_primPlusNat(Zero, []) → Zero
new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Q is empty.
We have to consider all (P,Q,R)-chains.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Pos(Succ(wv3100)), Pos(Zero), []) → new_takeWhile(Pos(Succ(wv3100)), Pos(new_primPlusNat0([])), [])

The TRS R consists of the following rules:

new_primPlusNat(Zero, []) → Zero
new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Q is empty.
We have to consider all (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

new_primPlusNat(Zero, []) → Zero

Used ordering: POLO with Polynomial interpretation [25]:

POL(Pos(x1)) = x1   
POL(Succ(x1)) = x1   
POL(Zero) = 1   
POL([]) = 0   
POL(new_primPlusNat(x1, x2)) = 2·x1 + 2·x2   
POL(new_primPlusNat0(x1)) = 1 + 2·x1   
POL(new_takeWhile(x1, x2, x3)) = x1 + x2 + x3   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ DependencyGraphProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Pos(Succ(wv3100)), Pos(Zero), []) → new_takeWhile(Pos(Succ(wv3100)), Pos(new_primPlusNat0([])), [])

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Q is empty.
We have to consider all (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Pos(wv310), Neg(Succ(Succ(wv30000))), []) → new_takeWhile(Pos(wv310), Neg(Succ(wv30000)), [])

The TRS R consists of the following rules:

new_primPlusNat(Zero, []) → Zero
new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Q is empty.
We have to consider all (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_takeWhile(Pos(wv310), Neg(Succ(Succ(wv30000))), []) → new_takeWhile(Pos(wv310), Neg(Succ(wv30000)), [])

Strictly oriented rules of the TRS R:

new_primPlusNat(Zero, []) → Zero
new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = x1   
POL(Pos(x1)) = x1   
POL(Succ(x1)) = 1 + x1   
POL(Zero) = 2   
POL([]) = 2   
POL(new_primPlusNat(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(new_primPlusNat0(x1)) = 2·x1   
POL(new_takeWhile(x1, x2, x3)) = x1 + x2 + x3   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ PisEmptyProof
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ QDPOrderProof
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Neg(Succ(wv3100)), Neg(Succ(wv3000)), []) → new_takeWhile11(wv3100, wv3000, wv3100, wv3000, [])
new_takeWhile11(wv55, wv56, Zero, Zero, []) → new_takeWhile12(wv55, wv56, [])
new_takeWhile12(wv55, Succ(wv560), []) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)), [])
new_takeWhile11(wv55, Succ(wv560), Zero, Succ(wv580), []) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)), [])
new_takeWhile11(wv55, wv56, Succ(wv570), Succ(wv580), []) → new_takeWhile11(wv55, wv56, wv570, wv580, [])

The TRS R consists of the following rules:

new_primPlusNat(Zero, []) → Zero
new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Q is empty.
We have to consider all (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


new_takeWhile12(wv55, Succ(wv560), []) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)), [])
new_takeWhile11(wv55, Succ(wv560), Zero, Succ(wv580), []) → new_takeWhile(Neg(Succ(wv55)), Neg(Succ(wv560)), [])
The remaining pairs can at least be oriented weakly.

new_takeWhile(Neg(Succ(wv3100)), Neg(Succ(wv3000)), []) → new_takeWhile11(wv3100, wv3000, wv3100, wv3000, [])
new_takeWhile11(wv55, wv56, Zero, Zero, []) → new_takeWhile12(wv55, wv56, [])
new_takeWhile11(wv55, wv56, Succ(wv570), Succ(wv580), []) → new_takeWhile11(wv55, wv56, wv570, wv580, [])
Used ordering: Polynomial interpretation [25]:

POL(Neg(x1)) = x1   
POL(Succ(x1)) = 1 + x1   
POL(Zero) = 0   
POL([]) = 0   
POL(new_primPlusNat(x1, x2)) = 1 + x1   
POL(new_primPlusNat0(x1)) = 1   
POL(new_takeWhile(x1, x2, x3)) = x2   
POL(new_takeWhile11(x1, x2, x3, x4, x5)) = 1 + x2   
POL(new_takeWhile12(x1, x2, x3)) = 1 + x2   

The following usable rules [17] were oriented:

new_primPlusNat(Zero, []) → Zero
new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ DependencyGraphProof
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Neg(Succ(wv3100)), Neg(Succ(wv3000)), []) → new_takeWhile11(wv3100, wv3000, wv3100, wv3000, [])
new_takeWhile11(wv55, wv56, Zero, Zero, []) → new_takeWhile12(wv55, wv56, [])
new_takeWhile11(wv55, wv56, Succ(wv570), Succ(wv580), []) → new_takeWhile11(wv55, wv56, wv570, wv580, [])

The TRS R consists of the following rules:

new_primPlusNat(Zero, []) → Zero
new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Q is empty.
We have to consider all (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
QDP
                                ↳ RuleRemovalProof
                      ↳ QDP
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile11(wv55, wv56, Succ(wv570), Succ(wv580), []) → new_takeWhile11(wv55, wv56, wv570, wv580, [])

The TRS R consists of the following rules:

new_primPlusNat(Zero, []) → Zero
new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Q is empty.
We have to consider all (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_takeWhile11(wv55, wv56, Succ(wv570), Succ(wv580), []) → new_takeWhile11(wv55, wv56, wv570, wv580, [])

Strictly oriented rules of the TRS R:

new_primPlusNat(Zero, []) → Zero
new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Succ(x1)) = 1 + 2·x1   
POL(Zero) = 1   
POL([]) = 2   
POL(new_primPlusNat(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(new_primPlusNat0(x1)) = 2·x1   
POL(new_takeWhile11(x1, x2, x3, x4, x5)) = x1 + x2 + x3 + x4 + x5   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ QDPOrderProof
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ RuleRemovalProof
QDP
                                    ↳ PisEmptyProof
                      ↳ QDP
                      ↳ QDP

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ RuleRemovalProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Neg(Zero), Pos(Zero), []) → new_takeWhile(Neg(Zero), Pos(new_primPlusNat0([])), [])

The TRS R consists of the following rules:

new_primPlusNat(Zero, []) → Zero
new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Q is empty.
We have to consider all (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

new_primPlusNat(Zero, []) → Zero

Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = x1   
POL(Pos(x1)) = x1   
POL(Succ(x1)) = x1   
POL(Zero) = 1   
POL([]) = 0   
POL(new_primPlusNat(x1, x2)) = 2·x1 + 2·x2   
POL(new_primPlusNat0(x1)) = 1 + 2·x1   
POL(new_takeWhile(x1, x2, x3)) = x1 + x2 + x3   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ DependencyGraphProof
                      ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Neg(Zero), Pos(Zero), []) → new_takeWhile(Neg(Zero), Pos(new_primPlusNat0([])), [])

The TRS R consists of the following rules:

new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Q is empty.
We have to consider all (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
QDP
                        ↳ RuleRemovalProof

Q DP problem:
The TRS P consists of the following rules:

new_takeWhile(Neg(Zero), Neg(Succ(Succ(wv30000))), []) → new_takeWhile(Neg(Zero), Neg(Succ(wv30000)), [])

The TRS R consists of the following rules:

new_primPlusNat(Zero, []) → Zero
new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Q is empty.
We have to consider all (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

new_takeWhile(Neg(Zero), Neg(Succ(Succ(wv30000))), []) → new_takeWhile(Neg(Zero), Neg(Succ(wv30000)), [])

Strictly oriented rules of the TRS R:

new_primPlusNat(Zero, []) → Zero
new_primPlusNat(Succ(wv510), []) → Succ(wv510)
new_primPlusNat0([]) → Succ(Zero)

Used ordering: POLO with Polynomial interpretation [25]:

POL(Neg(x1)) = x1   
POL(Succ(x1)) = 1 + x1   
POL(Zero) = 2   
POL([]) = 2   
POL(new_primPlusNat(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(new_primPlusNat0(x1)) = 2·x1   
POL(new_takeWhile(x1, x2, x3)) = x1 + x2 + x3   



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ NumRed
            ↳ HASKELL
              ↳ Narrow
              ↳ Narrow
                ↳ QDP
                  ↳ DependencyGraphProof
                    ↳ AND
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ PisEmptyProof

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.